Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Braz. j. biol ; 83: e248063, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1339340

ABSTRACT

Abstract Persea lingue Ness is a tree species that lives mainly in temperate forests of south-central Chile. Its leaves are used in ethnomedicine, the fruit is a drupe similar to that of the avocado and has not been studied. The aim of this study was to determine the cytotoxicity in leukemia cell and antibacterial activity, along with some chemical content characteristics of P. lingue fruit and leaf extracts. The antibacterial activity was determined by the inhibition of bacterial growth in liquid medium assay against Gram-positive and Gram-negative bacteria. The leukemia cell lines Kasumi-1 and Jurkat were used to evaluate the cytotoxic activity by using propidium iodide and AlamarBlue assays. Total phenolic, flavonoid, condensed tannin, alkaloid and lipid contents were evaluated in the fruit and in the leaf extracts. The antioxidant activity of both extracts were also elavaluated. Leaf extract presented the highest content of total phenols, condensed tannins and flavonoids, and also the highest antioxidant activity. While the fruit extract has a higher amount of lipids and alkaloids and the high antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus megaterium and Micrococcus luteus. The leaf extract only showed activity against M. luteus. Concerning the cytotoxic activity, only the fruit extract showed cytotoxicity against the cell lines Jurkat and Kasumi-1. P. lingue fruit extract is a potential source of biologically active molecules for the development of new drugs to be used in some types of leukemia, as well as antibacterial agent.


Resumo Persea lingue Ness é uma árvore que vive principalmente na floresta temperada do centro-sul do Chile. As folhas são usadas na etnomedicina. O fruto é uma drupa similar ao abacate e que nunca foi pesquisada anteriormente. O objetivo deste estudo foi o de avaliar a citotoxicidade em células leucêmicas e as atividades antibacterianas, assim como algumas características químicas do extrato de fruto e da folha do P. lingue. As atividades antibacterianas foram determinadas pelo método da inibição do crescimento bacteriano em meio líquido empregando-se bactérias Gram-positivas e Gram-negativas. As linhagens celulares leucêmicas, Kasumi-1 e Jurkat foram usadas para avaliar a atividade citotóxica em ensaios empregando-se iodeto de propídio e AlamarBlue. Foram avaliados os teores totais de fenóis, flavonóides, taninos condensados, alcalóides e lipídeos presentes nos extratos das folhas e dos frutos. As atividades antioxidantes de ambos os extratos também foram avaliadas. O extrato das folhas foi o que apresentou o maior conteúdo de fenóis, taninos condensados e flavonóides totais e a maior atividade antioxidante. Já o extrato de fruto apresentou a maior quantidade de lipídios e alcaloides e a melhor atividade antibacteriana contra Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus megaterium e Micrococcus luteus. Já o extrato das folhas apresentou apenas atividade contra M. luteus. Em relação à atividade citotóxica, apenas o extrato do fruto apresentou citotoxicidade contra as linhagens celulares Jurkat e Kasumi-1. Em resumo, o extrato do fruto de P. lingue é uma potencial fonte de moléculas com atividade biológica para o desenvolvimento de novos fármacos a serem utilizados em alguns tipos de leucemia, bem como agente antibacteriano.


Subject(s)
Lauraceae , Persea , Plant Extracts/pharmacology , Fruit , Gram-Negative Bacteria , Gram-Positive Bacteria , Anti-Bacterial Agents/pharmacology
2.
Acta Pharmaceutica Sinica ; (12): 423-428, 2023.
Article in Chinese | WPRIM | ID: wpr-965715

ABSTRACT

Seven compounds were isolated from Onychium japonicum by macroporous resin, silica gel, ODS, Sephadex LH-20 column chromatography and semi-preparative HPLC. Their structures were identified by NMR, MS and other spectroscopic methods as onychone A (1), quercetin (2), quercetin-3-O-α-L-rhamnoside (3), kaempferol-7-O-β-D-glucopyranoside (4), kaempferol-3-O-α-L-rhamnopyranoside (5), (-)-prunin (6), and norathyriol (7). Compound 1 is a novel macrocyclic flavonoid, and all the others are reported from this plant for the first time. In vitro cytotoxic activities of compounds 1-7 were evaluated by MTS testing with five cancer cell lines. Compound 7 exhibited weak cytotoxicity against tumor cell lines A549, SMMC-7721, and SW480.

3.
Acta Pharmaceutica Sinica ; (12): 162-169, 2023.
Article in Chinese | WPRIM | ID: wpr-964300

ABSTRACT

Thirteen isoflavones were separated and purified from an ethanol extract of the rhizome of Dalbergia benthamii Prain by using silica gel, Sephadex LH-20, recrystallization et al. Their structures were identified by physicochemical properties and spectral analysis such as MS, 1D/2D-NMR as dalbergibenthamin (1), butesuperin A (2), xanthocercin A (3), butesuperin B (4), di-O-methylalpinum isoflavone (5), 2′-deoxgisoaunculutin (6), robustone (7), 4′-hydroxy-5,7-dimethoxy-6-(3-methyl-2-butenyl)-isoflavone (8), formononetin (9), 6″-O-rhamnosyldaidzin (10), 3′,4′-di-O-methylene-5-hydroxy-7-methoxy-6-isopentenyl isoflavone (11), derrubone dimethyl enter (12), and derrubone (13). Compound 1 is a pair of new isoflavonoid enantiomers, compound 12 is a new natural product and compounds 1-7 and 10-13 were obtained from D. benthamii Prain for the first time. In vitro cytotoxic activities of the compounds were explored by MTS testing with HL-60, A-549, SMMC-7721, MCF-7 and SW480 cell lines. Results show that compound 8 significantly inhibited cellular proliferation. The IC50 of compound 8 in A-549 and SW480 cells was 16.68 ± 0.19 and 15.21 ± 0.60 μmol·L-1.

4.
Chinese Herbal Medicines ; (4): 343-346, 2023.
Article in English | WPRIM | ID: wpr-982498

ABSTRACT

OBJECTIVE@#To study the chemical constituents of the EtOAc extract of Armillaria gallica 012m.@*METHODS@#The chemical constituents of the EtOAc extract of A. gallica 012m were isolated and purified by various column chromatography and their structures were elucidated on the basis of the 1D and 2D NMR spectroscopic and HRESIMS data. Cytotoxicity of all isolates against A549, HCT-116, M231 and W256 human tumor cells was determined by the MTT method.@*RESULTS@#A new sesquiterpene aryl ester, armimelleolide C ( 1), and eight known ones including armillarivin ( 2), melleolide F ( 3), 6'-chloromelleolide F ( 4), melleolide ( 5), melleolide K ( 6), melledonol ( 7), 13-hydroxydihydromelleolide ( 8), and armillane ( 9), were isolated from the EtOAc extract of A. gallica 012m. All isolates showed potential cytotoxic activities against at least one of the human cancer cell lines with IC50 values ranging from (3.17 ± 0.54) to (17.57 ± 0.47) μmol/L. Compound 1 showed significant inhibitory activity against M231 with an IC50 value of (7.54 ± 0.24) μmol/L compared with paclitaxel as the positive control. Compounds 2, 3, and 7, 9 showed obvious inhibitory activity against HCT-116 and were better than that of the positive control.@*CONCLUSION@#The chemical constituents including a new sesquiterpene aryl ester armimelleolide C ( 1) from the EtOAc extract of A. gallica 012m have a variety of structures and potential antitumor activities.

5.
China Journal of Chinese Materia Medica ; (24): 978-984, 2023.
Article in Chinese | WPRIM | ID: wpr-970569

ABSTRACT

The present study investigated the chemical constituents from the leaves of Craibiodendron yunnanense. The compounds were isolated and purified from the leaves of C. yunnanense by a combination of various chromatographic techniques including column chromatography over polyamide, silica gel, Sephadex LH-20, and reversed-phase HPLC. Their structures were identified by extensive spectroscopic analyses including MS and NMR data. As a result, 10 compounds, including melionoside F(1), meliosmaionol D(2), naringenin(3), quercetin-3-O-α-L-arabinopyranoside(4), epicatechin(5), quercetin-3'-glucoside(6), corbulain Ib(7), loliolide(8), asiatic acid(9), and ursolic acid(10), were isolated. Compounds 1 and 2 were two new compounds, and compound 7 was isolated from this genus for the first time. All compounds showed no significant cytotoxic activity by MTT assay.


Subject(s)
Quercetin , Ericaceae , Plant Leaves , Catechin , Chromatography, High Pressure Liquid
6.
China Journal of Chinese Materia Medica ; (24): 707-714, 2023.
Article in Chinese | WPRIM | ID: wpr-970540

ABSTRACT

Chemical constituents in soft coral Sarcophyton glaucum were separated and purified by various chromatographic methods. Based on the spectral data, physicochemical properties, and comparison with the data reported in the literature, nine cembranoids, including a new cembranoid named sefsarcophinolide(1) together with eight known cembranoids, namely(+)-isosarcophine(2), sarcomilitatin D(3), sarcophytonolide J(4),(1S,3E,7E,13S)-11,12-epoxycembra-3,7,15-triene-13-ol(5), sarcophytonin B(6),(-)-eunicenone(7), lobophytin B(8), and arbolide C(9), were identified. As revealed by biological activity experiment results, compounds 2-6 had weak acetylcholinesterase inhibitory activity, and compound 5 displayed weak cytotoxicity against K562 tumor cell line.


Subject(s)
Animals , Anthozoa , Acetylcholinesterase , Cell Line, Tumor
7.
Braz. j. biol ; 83: 1-10, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468921

ABSTRACT

Persea lingue Ness is a tree species that lives mainly in temperate forests of south-central Chile. Its leaves are used in ethnomedicine, the fruit is a drupe similar to that of the avocado and has not been studied. The aim of this study was to determine the cytotoxicity in leukemia cell and antibacterial activity, along with some chemical content characteristics of P. lingue fruit and leaf extracts. The antibacterial activity was determined by the inhibition of bacterial growth in liquid medium assay against Gram-positive and Gram-negative bacteria. The leukemia cell lines Kasumi-1 and Jurkat were used to evaluate the cytotoxic activity by using propidium iodide and AlamarBlue assays. Total phenolic, flavonoid, condensed tannin, alkaloid and lipid contents were evaluated in the fruit and in the leaf extracts. The antioxidant activity of both extracts were also elavaluated. Leaf extract presented the highest content of total phenols, condensed tannins and flavonoids, and also the highest antioxidant activity. While the fruit extract has a higher amount of lipids and alkaloids and the high antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus megaterium and Micrococcus luteus. The leaf extract only showed activity against M. luteus. Concerning the cytotoxic activity, only the fruit extract showed cytotoxicity against the cell lines Jurkat and Kasumi-1. P. lingue fruit extract is a potential source of biologically active molecules for the development of new drugs to be used in some types of leukemia, as well as antibacterial agent.


Persea lingue Ness é uma árvore que vive principalmente na floresta temperada do centro-sul do Chile. As folhas são usadas na etnomedicina. O fruto é uma drupa similar ao abacate e que nunca foi pesquisada anteriormente. O objetivo deste estudo foi o de avaliar a citotoxicidade em células leucêmicas e as atividades antibacterianas, assim como algumas características químicas do extrato de fruto e da folha do P. lingue. As atividades antibacterianas foram determinadas pelo método da inibição do crescimento bacteriano em meio líquido empregando-se bactérias Gram-positivas e Gram-negativas. As linhagens celulares leucêmicas, Kasumi-1 e Jurkat foram usadas para avaliar a atividade citotóxica em ensaios empregando-se iodeto de propídio e AlamarBlue. Foram avaliados os teores totais de fenóis, flavonóides, taninos condensados, alcalóides e lipídeos presentes nos extratos das folhas e dos frutos. As atividades antioxidantes de ambos os extratos também foram avaliadas. O extrato das folhas foi o que apresentou o maior conteúdo de fenóis, taninos condensados e flavonóides totais e a maior atividade antioxidante. Já o extrato de fruto apresentou a maior quantidade de lipídios e alcaloides e a melhor atividade antibacteriana contra Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus megaterium e Micrococcus luteus. Já o extrato das folhas apresentou apenas atividade contra M. luteus. Em relação à atividade citotóxica, apenas o extrato do fruto apresentou citotoxicidade contra as linhagens celulares Jurkat e Kasumi-1. Em resumo, o extrato do fruto de P. lingue é uma potencial fonte de moléculas com atividade biológica para o desenvolvimento de novos fármacos a serem utilizados em alguns tipos de leucemia, bem como agente antibacteriano.


Subject(s)
Anti-Bacterial Agents/analysis , Antineoplastic Agents/analysis , Cytotoxins/analysis , Persea/chemistry
8.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469137

ABSTRACT

Abstract Persea lingue Ness is a tree species that lives mainly in temperate forests of south-central Chile. Its leaves are used in ethnomedicine, the fruit is a drupe similar to that of the avocado and has not been studied. The aim of this study was to determine the cytotoxicity in leukemia cell and antibacterial activity, along with some chemical content characteristics of P. lingue fruit and leaf extracts. The antibacterial activity was determined by the inhibition of bacterial growth in liquid medium assay against Gram-positive and Gram-negative bacteria. The leukemia cell lines Kasumi-1 and Jurkat were used to evaluate the cytotoxic activity by using propidium iodide and AlamarBlue assays. Total phenolic, flavonoid, condensed tannin, alkaloid and lipid contents were evaluated in the fruit and in the leaf extracts. The antioxidant activity of both extracts were also elavaluated. Leaf extract presented the highest content of total phenols, condensed tannins and flavonoids, and also the highest antioxidant activity. While the fruit extract has a higher amount of lipids and alkaloids and the high antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus megaterium and Micrococcus luteus. The leaf extract only showed activity against M. luteus. Concerning the cytotoxic activity, only the fruit extract showed cytotoxicity against the cell lines Jurkat and Kasumi-1. P. lingue fruit extract is a potential source of biologically active molecules for the development of new drugs to be used in some types of leukemia, as well as antibacterial agent.


Resumo Persea lingue Ness é uma árvore que vive principalmente na floresta temperada do centro-sul do Chile. As folhas são usadas na etnomedicina. O fruto é uma drupa similar ao abacate e que nunca foi pesquisada anteriormente. O objetivo deste estudo foi o de avaliar a citotoxicidade em células leucêmicas e as atividades antibacterianas, assim como algumas características químicas do extrato de fruto e da folha do P. lingue. As atividades antibacterianas foram determinadas pelo método da inibição do crescimento bacteriano em meio líquido empregando-se bactérias Gram-positivas e Gram-negativas. As linhagens celulares leucêmicas, Kasumi-1 e Jurkat foram usadas para avaliar a atividade citotóxica em ensaios empregando-se iodeto de propídio e AlamarBlue. Foram avaliados os teores totais de fenóis, flavonóides, taninos condensados, alcalóides e lipídeos presentes nos extratos das folhas e dos frutos. As atividades antioxidantes de ambos os extratos também foram avaliadas. O extrato das folhas foi o que apresentou o maior conteúdo de fenóis, taninos condensados e flavonóides totais e a maior atividade antioxidante. Já o extrato de fruto apresentou a maior quantidade de lipídios e alcaloides e a melhor atividade antibacteriana contra Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus megaterium e Micrococcus luteus. Já o extrato das folhas apresentou apenas atividade contra M. luteus. Em relação à atividade citotóxica, apenas o extrato do fruto apresentou citotoxicidade contra as linhagens celulares Jurkat e Kasumi-1. Em resumo, o extrato do fruto de P. lingue é uma potencial fonte de moléculas com atividade biológica para o desenvolvimento de novos fármacos a serem utilizados em alguns tipos de leucemia, bem como agente antibacteriano.

9.
Asian Pacific Journal of Tropical Biomedicine ; (12): 446-452, 2022.
Article in Chinese | WPRIM | ID: wpr-950172

ABSTRACT

Objective: To evaluate the effects of phenolic acids (caffeic, ferulic, and coumaric acids) and flavones (luteolin and apigenin) on the proliferation and melanogenesis in murine melanoma B16-F10 cells. Methods: Cell proliferation was determined after 24 and 48 hours of incubation using MTT assay. The effects of these tested compounds on cell cycle progression were analyzed by flow cytometry. Moreover, the melanin content and tyrosinase activity were measured spectrophotometrically at 475 nm. Results: Luteolin and apigenin exhibited significant anti-proliferative activity against B16-F10 cells, while caffeic, ferulic, and coumaric acids induced slight inhibition after 24 and 48 hours of incubation. The tested compounds disturbed cell cycle progression of B16-F10, by a subsequent decrease in G

10.
Braz. j. biol ; 82: e231957, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1249251

ABSTRACT

Essential oils from the stems and leaves of Croton doctoris were analyzed by gas chromatography and mass spectrometry, resulting in 22 identified compounds. The effects of these essential oils on the germination, root and shoot growth, total chlorophyll content, potential root respiration, peroxidase activity, catalase, superoxide dismutase, and mitotic index in lettuce and onion were determined. Antioxidant, antimicrobial, and cytotoxic activity were also investigated. The results revealed that the stem oil consisted of 15 compounds, of which caryophyllene oxide (24.5%) and E-caryophyllene (13.3%) were the major constituents. The leaf oil contained E-caryophyllene (39.6%) and α-humulene (13.2%) as major compounds. The oils inhibited the germination and growth of lettuce and onion seedlings and reduced chlorophyll content, root respiration, and cell division. They also caused oxidative stress, indicated by the increased activity of the evaluated antioxidant enzymes. These abnormal physiological processes contributed to the inhibition of plant growth. The most pronounced phytotoxic effects were observed in the stem oil. The cytotoxicity tests indicated that leaf oil was more active than stem oil, resulting from the presence of biologically active sesquiterpenes that inhibit the growth of cancer cells.


Os óleos essenciais do caule e da folha de Croton doctoris foram analisados por cromatografia gasosa (GC) e espectrometria de massa (GC-MS) resultando em 22 compostos identificados. Os efeitos dos óleos essenciais na germinação, crescimento de raízes e parte aérea, teor total de clorofila, respiração radicular, atividade de peroxidase, catalase e superóxido de dimetase e índice mitótico foram determinados em alface e cebola. Atividade antioxidante, antimicrobiana e citotóxica também foram investigadas. Os resultados revelaram que o óleo do caule é constituído por 15 compostos, dos quais os principais são o óxido de cariofileno (24,5%) e E-cariofileno (13,3%). O óleo foliar apresentou E-cariofileno (39,6%) seguido de α-humuleno (13,2%) como compostos majoritários. Os óleos inibiram a germinação e o crescimento das plântulas de alface e cebola e reduziram o conteúdo de clorofila, a respiração radicular e a divisão celular. Eles também causaram estresse oxidativo, indicado pelo aumento da atividade das enzimas antioxidantes avaliadas. Esses processos fisiológicos anormais contribuem para a inibição do crescimento das plantas. Os efeitos fitotóxicos mais pronunciados foram observados no óleo do caule. Nos testes de citotoxicidade observou-se que o óleo das folhas foi mais ativo, resultante da presença de sesquiterpenos biologicamente ativos que atuam inibindo o crescimento das células cancerígenas.


Subject(s)
Oils, Volatile/toxicity , Euphorbiaceae , Croton , Plant Oils , Plant Leaves , Lettuce , Germination
11.
Braz. arch. biol. technol ; 65: e22210621, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364461

ABSTRACT

Abstract: Tradescantia pallida (Commelinaceae) has shown promising antibacterial, antioxidant and anticancer activities. This study aimed at extracting hexane from T. pallida (HE-TP) aerial parts to identify and quantify its volatile compounds by GC-MS and GC-FID and at evaluating its antifungal and antiproliferative activities. (E)-4-Methoxycynnamic acid (50.2%), 2,5-di-tert-butyl-1,4-benzoquinone (13.7%) and epijuvabione (10.4%) were the major components identified in HE-TP. HE-TP was incorporated into PDA medium, poured into Petri dishes and transferred to mycelial discs of pathogens. Percentages of inhibition of fungal growth were determined. HE-TP showed remarkable antifungal potential at the dose of 400 µL since it inhibited 100% of Penicillium digitatum and Sclerotinia sclerotiorum growth and 92.6% of Rhizopus stolonifer growth. Besides, HE-TP demonstrated cytotoxic activity against different human tumor cell lines with IC50 values between 231.43 and 428.76 µg/mL. Therefore, results showed that HE-TP has potential against fungi of agronomic interest and tumor cells.

12.
Braz. j. biol ; 82: 1-11, 2022. tab, ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468469

ABSTRACT

Essential oils from the stems and leaves of Croton doctoris were analyzed by gas chromatography and mass spectrometry, resulting in 22 identified compounds. The effects of these essential oils on the germination, root and shoot growth, total chlorophyll content, potential root respiration, peroxidase activity, catalase, superoxide dismutase, and mitotic index in lettuce and onion were determined. Antioxidant, antimicrobial, and cytotoxic activity were also investigated. The results revealed that the stem oil consisted of 15 compounds, of which caryophyllene oxide (24.5%) and E-caryophyllene (13.3%) were the major constituents. The leaf oil contained E-caryophyllene (39.6%) and α-humulene (13.2%) as major compounds. The oils inhibited the germination and growth of lettuce and onion seedlings and reduced chlorophyll content, root respiration, and cell division. They also caused oxidative stress, indicated by the increased activity of the evaluated antioxidant enzymes. These abnormal physiological processes contributed to the inhibition of plant growth. The most pronounced phytotoxic effects were observed in the stem oil. The cytotoxicity tests indicated that leaf oil was more active than stem oil, resulting from the presence of biologically active sesquiterpenes that inhibit the growth of cancer cells.


Os óleos essenciais do caule e da folha de Croton doctoris foram analisados por cromatografia gasosa (GC) e espectrometria de massa (GC-MS) resultando em 22 compostos identificados. Os efeitos dos óleos essenciais na germinação, crescimento de raízes e parte aérea, teor total de clorofila, respiração radicular, atividade de peroxidase, catalase e superóxido de dimetase e índice mitótico foram determinados em alface e cebola. Atividade antioxidante, antimicrobiana e citotóxica também foram investigadas. Os resultados revelaram que o óleo do caule é constituído por 15 compostos, dos quais os principais são o óxido de cariofileno (24,5%) e E-cariofileno (13,3%). O óleo foliar apresentou E-cariofileno (39,6%) seguido de α-humuleno (13,2%) como compostos majoritários. Os óleos inibiram a germinação e o crescimento das plântulas de alface e cebola e reduziram o conteúdo de clorofila, a respiração radicular e a divisão celular. Eles também causaram estresse oxidativo, indicado pelo aumento da atividade das enzimas antioxidantes avaliadas. Esses processos fisiológicos anormais contribuem para a inibição do crescimento das plantas. Os efeitos fitotóxicos mais pronunciados foram observados no óleo do caule. Nos testes de citotoxicidade observou-se que o óleo das folhas foi mais ativo, resultante da presença de sesquiterpenos biologicamente ativos que atuam inibindo o crescimento das células cancerígenas.


Subject(s)
Croton/chemistry , Croton/toxicity , Oils, Volatile/therapeutic use
13.
Braz. j. biol ; 822022.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468656

ABSTRACT

Abstract Essential oils from the stems and leaves of Croton doctoris were analyzed by gas chromatography and mass spectrometry, resulting in 22 identified compounds. The effects of these essential oils on the germination, root and shoot growth, total chlorophyll content, potential root respiration, peroxidase activity, catalase, superoxide dismutase, and mitotic index in lettuce and onion were determined. Antioxidant, antimicrobial, and cytotoxic activity were also investigated. The results revealed that the stem oil consisted of 15 compounds, of which caryophyllene oxide (24.5%) and E-caryophyllene (13.3%) were the major constituents. The leaf oil contained E-caryophyllene (39.6%) and -humulene (13.2%) as major compounds. The oils inhibited the germination and growth of lettuce and onion seedlings and reduced chlorophyll content, root respiration, and cell division. They also caused oxidative stress, indicated by the increased activity of the evaluated antioxidant enzymes. These abnormal physiological processes contributed to the inhibition of plant growth. The most pronounced phytotoxic effects were observed in the stem oil. The cytotoxicity tests indicated that leaf oil was more active than stem oil, resulting from the presence of biologically active sesquiterpenes that inhibit the growth of cancer cells.


Resumo Os óleos essenciais do caule e da folha de Croton doctoris foram analisados por cromatografia gasosa (GC) e espectrometria de massa (GC-MS) resultando em 22 compostos identificados. Os efeitos dos óleos essenciais na germinação, crescimento de raízes e parte aérea, teor total de clorofila, respiração radicular, atividade de peroxidase, catalase e superóxido de dimetase e índice mitótico foram determinados em alface e cebola. Atividade antioxidante, antimicrobiana e citotóxica também foram investigadas. Os resultados revelaram que o óleo do caule é constituído por 15 compostos, dos quais os principais são o óxido de cariofileno (24,5%) e E-cariofileno (13,3%). O óleo foliar apresentou E-cariofileno (39,6%) seguido de -humuleno (13,2%) como compostos majoritários. Os óleos inibiram a germinação e o crescimento das plântulas de alface e cebola e reduziram o conteúdo de clorofila, a respiração radicular e a divisão celular. Eles também causaram estresse oxidativo, indicado pelo aumento da atividade das enzimas antioxidantes avaliadas. Esses processos fisiológicos anormais contribuem para a inibição do crescimento das plantas. Os efeitos fitotóxicos mais pronunciados foram observados no óleo do caule. Nos testes de citotoxicidade observou-se que o óleo das folhas foi mais ativo, resultante da presença de sesquiterpenos biologicamente ativos que atuam inibindo o crescimento das células cancerígenas.

14.
Acta Pharmaceutica Sinica ; (12): 441-445, 2022.
Article in Chinese | WPRIM | ID: wpr-922937

ABSTRACT

Four triterpenoids were isolated and purified from the 95% ethanol extract of Maytenus guangxiensis by silica gel column chromatography, Sephadex LH-20 column chromatography, MCI column chromatography and preparative RP-HPLC. Their structures were determined from their physicochemical properties and spectral data. They were identified as maytguanone A (1), maytguanone B (2), 11α-methoxyurs-12-ene-1β,3β-diol (3), lup-20(29)-ene-3β,11α-diol (4). Compounds 1 and 2 are new triterpenoids, along with compounds 3 and 4 were isolated from M. guangxiensis for the first time. The cytotoxicity of compounds 1, 3 and 4 was evaluated using the MTT procedure with three cancer cell lines. The results show that compound 3 displayed good inhibitory effects against HeLa, with an IC50 of 10.68 μmol·L-1.

15.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 202-209, 2022.
Article in English | WPRIM | ID: wpr-929252

ABSTRACT

Two cardenolide glycosides, corotoxigenin 3-O-[β-D-glucopyranosyl-(1→4)-6-deoxy-β-D-glucopyranoside] (1) and coroglaucigenin 3-O-[β-D-glucopyranosyl-(1→4)-6-deoxy-β-D-glucopyranoside] (2), were isolated from the seed fairs of Asclepias curassavica. The structures of 1-2 were determined based on the combination of the analysis of their MS, NMR spectroscopic data and acid hydrolysis. The inhibitory effects of compounds 1 and 2 on human colorectal carcinoma cells (HCT116), non-small cell lung carcinoma cells (A549) and hepatic cancer cells (SMMC-7721) were evaluated. The results showed that both compounds 1 and 2 significantly inhibited the viability, proliferation, and migration of A549, HCT116 and SMMC-7721 cells, suggesting that compounds 1 and 2 can be applied in the treatment of lung, colon and liver cancers in clinical practice. This study may not only provide a scientific basis for clarifying the active ingredients in A. curassavica, but also help to understand its antitumor activity, which can promote the application of A. curassavica in clinical treatment of various cancers.


Subject(s)
Humans , Antineoplastic Agents/pharmacology , Asclepias/chemistry , Cardenolides/pharmacology , Glycosides/pharmacology , Seeds
16.
Braz. J. Pharm. Sci. (Online) ; 57: e18479, 2021. tab, graf
Article in English | LILACS | ID: biblio-1339305

ABSTRACT

The seed oil of Annona salzmannii A. DC. was analyzed by GC-MS and 1H qNMR, revealing a mixture of unsaturated (80.5%) and saturated (18.7%) fatty acids. Linoleic (45.3%) and oleic (33.5%) acid were the major unsaturated fatty acids identified, while palmitic acid (14.3%) was the major saturated fatty acid. The larvicidal effects of A. salzmannii seed oil were evaluated against third-instar larvae of Aedes aegypti (Linn.). The oil exhibited moderate larvicidal activity, with a LC50 of 569.77 ppm (95% CI = 408.11 to 825.88 ppm). However, when the cytotoxic effects of the oil were evaluated, no expressive antiproliferative effects were observed in tumor cell lines B16-F10 (mouse melanoma), HepG2 (human hepatocellular carcinoma), K562 (human chronic myelocytic leukemia), HL-60 (human promyelocytic leukemia), and non-tumor cell line PBMC (peripheral blood mononuclear cells), with IC50 values > 50 µg·mL-1. This is the first study to evaluate the chemical composition, larvicidal and cytotoxic activity of A. salzmannii seed oil


Subject(s)
Seeds/anatomy & histology , Plant Oils/analysis , Annonaceae/chemistry , Annona/adverse effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Fatty Acids, Unsaturated , Larva/classification
17.
Braz. arch. biol. technol ; 64: e21190530, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153299

ABSTRACT

HIGHLIGHTS The phenolic composition, antioxidant activity and cytotoxic potential of the extracts of C. solstitialis and U. picroides were investigated. Caffeic acid was found as the most abundant phenolic compound in the extracts. Both species showed promising antioxidant activity towards different assays. The highest cytotoxic potential was observed in the extract of C. solstitialis.


Abstract It is known that some genera of the Asteraceae family are commonly used in Turkish folk medicine. Several studies have investigated the biological effects of different extracts of Centaurea and Urospermum species, but studies involving the phenolic composition of C. solstitialis and U. picroides extracts are very limited. This study aimed to investigate the phenolic composition and antioxidant activity of C. solstitialis and U. picroides and evaluate their possible cytotoxic effect. RP-HPLC analysis was used to elucidate the phenolic profiles of the ethanolic extracts of flowering parts of C. solstitialis and U. picroides.The both ethanolic extracts were assessed for their antioxidant properties using DPPH, FRAP, phosphomolybdenum and metal chelating assays. Furthermore, the effect of the extracts on cell viability was evaluated against MCF-7 and PC-3 cancer cells and HEK293 cell line using the MTT assay. The most abundant phenolic compound in both extracts was determined to be caffeic acid, and the amount of this compound was 24078.03 and 14329.59 µg g-1 in the extracts of C. solstitialis and U. picroides, respectively. The antioxidant activity of the extracts was found similar. Compared with U. picroides extract, C. solstitialis extract had higher potential on the inhibition of cell viability. The IC50 value of C. solstitialis on MCF cells was found as 58.53 µg mL-1. These data suggest that the extracts of C. solstitialis and U. picroides may be considered as novel and alternative natural antioxidant and anticancer sources.


Subject(s)
Humans , Asteraceae/chemistry , Cytotoxins/pharmacology , Centaurea/chemistry , Phenolic Compounds/analysis , Antioxidants/pharmacology , Phenols/pharmacology , Plants, Medicinal , Turkey , Caffeic Acids/pharmacology , Plant Extracts/pharmacology , Chromatography, High Pressure Liquid , HEK293 Cells
18.
China Journal of Chinese Materia Medica ; (24): 1783-1789, 2021.
Article in Chinese | WPRIM | ID: wpr-879092

ABSTRACT

Chemical constituents were isolated and purified from fruiting bodies of Ganoderma calidophilum by various column chromatographic techniques, and their chemical structures were identified through combined analysis of physicochemical properties and spectral data. As a result, 11 compounds were isolated and identified as(24E)-lanosta-8,24-dien-3,11-dione-26-al(1), ganoderone A(2), 3-oxo-15α-acetoxy-lanosta-7,9(11), 24-trien-26-oleic acid(3),(23E)-27-nor-lanosta-8,23-diene-3,7,25-trione(4), ganodecanone B(5), ganoderic aldehyde A(6), 11β-hydroxy-lucidadiol(7), 3,4-dihydroxyacetophenone(8), methyl gentiate(9), ganoleucin C(10), ganotheaecolumol H(11). Among them, compound 1 is a new triterpenoid. The cytotoxic activities of all of the compounds against tumor cell lines were evaluated. The results showed that compounds 1, 3, 4 and 6 showed cytotoxic activity against BEL-7402, with IC_(50) values of 26.55, 11.35, 23.23, 18.66 μmol·L~(-1); compounds 1 and 3-6 showed cytotoxic activity against K562, with IC_(50) values of 5.79, 22.16, 12.16, 35.32, and 5.59 μmol·L~(-1), and compound 4 showed cytotoxic activity against A549, with IC_(50) value of 42.50 μmol·L~(-1).


Subject(s)
Cell Line, Tumor , Fruiting Bodies, Fungal , Ganoderma , Molecular Structure , Triterpenes/pharmacology
19.
Article | IMSEAR | ID: sea-210667

ABSTRACT

Cyanobacteria-mediated silver nanoparticles synthesis approach has proven to be more efficient and eco-friendlyin achieving biomedical applications compared to physical and chemical prototypes. In the present work, the silvernanoparticles were successfully synthesized by cell-free extract of freshwater cyanobacteria, i.e., Chroococcus turgidusand Characium typicum. The cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy,scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR)analysis and were further tested for antibacterial and cytotoxic efficiency. The synthesis of CSNPs was confirmed throughvisible color change and shift of peaks at 430–445 nm by the UV-Vis spectroscopy. The size of CSNPs was between22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a newpeak at the range of 3,400–3,460 cm−1 compared to control, confirming the reduction of silver nitrate. Furthermore, theantibacterial activity of CSNPs showed highest zone of inhibition with 6.9, 4.0, 2.0, and 3.0 mm against Salmonellaparatyphi, Escherichia coli, Klebsiella pneumonia, and Staphylococus aureus, respectively, whereas in vitro cytotoxicactivity of C. typicum and C. turgidus silver nanoparticles showed remarkable IC50 values with 43.3 and 40.9 ug/mlagainst MCF-7 breast cancer cell line and 20.8 and 55.7 ug/ml against HepG2 cancer cell, simultaneously

20.
Article | IMSEAR | ID: sea-210739

ABSTRACT

A series of pyrazolines and pyridines bearing benzofuran moiety (M1–M10) were synthesized for evaluation of theirin vitro cytotoxicity against MCF-7 and HepG2 cell lines. Furthermore, in silico drug-likeness study was carried out.The result of the cytotoxicity of M1–M10 showed that some compounds displayed cytotoxic activity against MCF-7and HepG2 cells. An assessment of in silico drug-likeness study of M1–M10 illustrates that some compounds showedan agreement to the Lipinski, Ghose, Veber, Egan, and Muegge rules with orally bioavailable.

SELECTION OF CITATIONS
SEARCH DETAIL